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Abstract

Existing methods for the semantic analysis of multimedia, although effective

for single-medium scenarios, are inherently flawed in cases where knowledge

is spread over different media types. In this work we implement a cross

media analysis scheme that takes advantage of both visual and textual in-

formation for detecting high-level concepts. The novel aspect of this scheme

is the definition and use of a conceptual space where information originating

from heterogeneous media types can be meaningfully combined and facili-

tate analysis decisions. More specifically, our contribution is on proposing a

modeling approach for Bayesian Networks that defines this conceptual space

and allows evidence originating from the domain knowledge, the application

context and different content modalities to support or disproof a certain hy-

pothesis. Using this scheme we have performed experiments on a set of 162
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compound documents taken from the domain of car manufacturing industry

and 118581 video shots taken from the TRECVID2010 competition. The

obtained results have shown that the proposed modeling approach exploits

the complementary effect of evidence extracted across different media and

delivers performance improvements compared to the single-medium cases.

Moreover, by comparing the performance of the proposed approach with an

approach using Support Vector Machines (SVM), we have verified that in a

cross media setting the use of generative rather than discriminative models

are more suited, mainly due to their ability to smoothly incorporate explicit

knowledge and learn from a few examples.

1. Introduction

The automatic extraction of semantic metadata from multimedia content

has been recognized as a particularly valuable task for various applications

of digital content consumption. Current literature has made considerable

progress in this direction especially for single-medium scenarios. However,

the methods proposed in the literature do not apply in cases where infor-

mation is spread over different media types and unless considered simulta-

neously, its contribution cannot be fully exploited by the analysis process.

Motivated by this, cross media analysis seeks to enhance semantic meta-

data extraction by exploiting information across media. Practically, the aim

of such methods is to combine the evidence extracted from different media

types and accumulate their effect in favor or against a certain hypothesis.

These pieces of evidence can belong to different levels of granularity and

used differently by the analysis mechanism. For instance, we can consider
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cross media analysis to be a general fusion problem that is carried out at

different levels of abstraction, namely result-level [1], [2], [3], extraction-level

[4], [5], [6] and feature-level [7], [8], [9].

In the result-level approach, information from each data source is ini-

tially extracted separately and, still separately, transformed into conceptual

information. Though result-level approaches are closer to human cognition

and more suited for exploiting explicit knowledge (i.e., knowledge that is

explicitly provided by experts in the form or rules, ontologies or other for-

mal languages for knowledge representation), their major drawback is that

each extractor has to produce its own internal evidence in order to extract

the conceptual information. In the extractor-level approach the conceptual

information is not extracted separately from each modality but instead, the

analysis mechanism takes into account evidence from other modalities. In-

formation coming from one medium may assist the information extraction

module of another medium, using as input the output of another extractor.

However, in contrast to the result-level approaches where knowledge is in-

corporated into the conceptual space, in this case it can only be exploited as

part of a task specific mechanism. The feature-level approach consists in us-

ing all low-level features that can be extracted from each medium within the

same analysis process. Initially, low-level features (e.g., text-tokens, named

entities or image descriptors) are extracted separately from each modality

and integrated into a common, concatenated representation. Subsequently,

the common representation is used as input for the analysis process (i.e.,

classification, indexing, etc). Feature-level analysis aims at exploiting the

joint existence of low-level features into the same resource, but it is rather
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difficult to incorporate explicit knowledge in this case.

Our work is motivated by the need to boost the efficiency of cross me-

dia analysis using the knowledge explicitly provided by domain experts (i.e.,

domain knowledge). This was the reason for developing a method that op-

erates on the result-level of abstraction and allows domain knowledge to

become part of the inference process. Our method combines the soft evi-

dence (soft in the sense that a confidence degree is attached to every piece of

evidence) collected from different media types, to support or disproof a cer-

tain hypothesis made about the semantic content of the analyzed resource.

Soft evidence are obtained by applying single-medium analyzers on the low-

level features of the different media types. Subsequently, these pieces of

evidence are used to drive a probabilistic inference process that takes place

in a Bayesian Network (BN). The structure and parameters of the BN are

constructed by incorporating domain knowledge (expressed using ontologies)

and application context (captured by conditional probabilities). We use the

soft evidence to update the observable variables of the BN and verify or

reject the examined hypothesis based on the posteriori probability of the re-

maining variables. Fig. 1 demonstrates the functional relations between the

components of the proposed cross media analysis scheme.

The novelty introduced by the proposed method is that it manages to

integrate into a common inference framework three types of information, a)

information obtained from the analysis of heterogeneous content (i.e., the

output of single-medium analyzers supplied as soft evidence), b) information

about the domain that is provided explicitly, and c) contextual information

that is learned from sample data. Our contribution is on proposing a mod-
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Figure 1: Cross media analysis scheme

eling approach for the BN that results in a conceptual space of likelihood

estimates. In this space the evidence originating from the domain knowl-

edge, the application context and the different content modalities can be

meaningfully combined and facilitate semantic metadata extraction.

We show using content from a real world application taken from the car

manufacturing industry as well as from the TRECVID2010 competition, that

performing cross media analysis using the proposed method leads to signifi-

cant improvements compared to the cases where single-medium analyzers act

separately. We also prove experimentally that, in a cross media setting, the

generative models outperform the discriminative ones in fusing the extracted

evidence, mainly due to their ability in efficiently handling prior knowledge

and learning from a few examples.

The rest of the manuscript is organized as follows. Section 2 details the

proposed approach for modeling the BN and determining the conceptual

space. Section 3 describes the implemented cross media analysis scheme

including details for the utilized single-medium analyzers, as well as the

methodology adopted for integrating implicit and explicit knowledge in the
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BN. Experimental results are presented in Section 4. Section 5 reviews the re-

lated literature, while Section 6 concludes our paper and provides references

to future work.

2. Modeling the Bayesian Network

In this section we describe the main contribution of our work, which is a

generic approach for modeling BNs that can be used to define a conceptual

space suitable for combining heterogeneous types of information. The types

of information that are handled by this approach are: a) conceptual informa-

tion shared amongst most individuals that determines the logical relations

between concepts, such as sub-class, union, intersection, disjoint, etc (i.e., do-

main knowledge), b) information that qualitatively evaluates the co-existence

of concepts, encoding for example how likely is for one concept to be present

when another concept is verified (i.e., application context), and c) informa-

tion extracted from content analysis that encodes the support received from

the analyzed low-level features in favor of a specific concept (single-medium

evidence). Our approach relies on probabilities and probabilistic inference to

define the common conceptual space.

More specifically, the explicitly provided domain knowledge is used to

determine the structure of the BN and in this way enforce the logic rules

of the domain during inference. The application context is approximated

by the co-occurrence frequency between domain concepts, information that

can be extracted using a sample of the population that is being modeled.

The application context is encoded into the Conditional Probability Tables

(CPTs) of the BN nodes, which influence the inference process when belief
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propagation takes place. However, the most critical point is how to incorpo-

rate the information received from content analysis. In order to do this, we

treat the outcome of single-medium analyzers as soft evidence that are used

to instantiate the nodes of a BN operating on a conceptual true-false space.

The reason for selecting these states (i.e., true, false) to be the only possi-

ble states of all network nodes, was to establish a “lingua franca” between

the heterogeneous types of information and facilitate the incorporation of

domain knowledge in decision making. By adopting the proposed modeling

approach the constructed BN does not operate on the low-level features of

the content, which would constitute a typical application of the BN theory.

Instead, it operates on the space determined by the probability estimates

(that we call conceptual true-false space), obtained through the application

of machine learning techniques on the low-level features (as described later

in Section 3.2). In the following, we provide details on how the proposed

modeling approach can be used to determine a BN for analyzing compound

documents, but can be seamlessly applied to analyze any other multi-modal

resource, or handle an arbitrary number of modalities.

Let us consider a set of compound documents D where each document is

composed of its visual and textual part:

Di = [Ti, Vi] (1)

Let also ti, vi be the features extracted from Ti, Vi respectively. We

consider the single-medium analyzers to be the functions fcj (·) and gcj(·)

that outputs the probability of a given concept cj being valid for a document

either based on its textual or visual low-level features, respectively:

7



fcj (Ti) = P (cj = true|ti), for the textual part of Di

gcj(Vi) = P (cj = true|vi), for the visual part of Di

(2)

Thus, if we have a single-medium analyzer that is trained to detect all

domain concepts ∀cj ∈ C, it produces |C| probabilities when applied on a

document Di. In order to construct a BN that operates on a conceptual

true-false, for every concept cj we create a discrete random variable with

two states rz = {true, false}. Then, we link these nodes based on their

logical relations (as explained in Section 3.3.1) and learn the CPTs by ap-

plying the Expectation Maximization algorithm on sample data (as detailed

in Section 3.3.1). We consider the output of the single-medium analyzer to

formulate a new feature space y, determined from the probability estimates.

We refer to this new feature space as conceptual true-false space. By applying

the Bayes rule in feature space y we have for each concept cj:

Pcj(rz|y) =
Pcj(y|rz)Pcj(rz)

Pcj(y)
, ∀cj ∈ C (3)

Pcj(rz) represents our prior knowledge about cj and in the conceptual

true-false space we accept that Pcj (rz = true) is equal to the frequency of

appearance of cj in the domain (i.e., how often appears in the training set).

Respectively, we accept that Pcj(rz = false) = 1 − Pcj (rz = true). Pcj(y)

is a scale factor that guarantees that the posterior probabilities sum to one

and equals:

Pcj(y) =
∑

rz∈{true,false}

Pcj(y|rz)Pcj (rz) (4)
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Pcj(y|rz) is the likelihood (or class conditional probability) of rz with

respect to y. Pcj(rz|y) is the posterior probability of rz after considering the

analysis outcome and taking into consideration prior knowledge. In order to

facilitate the analysis process we need to calculate the posterior probabilities

for each independent piece of conceptual information (i.e., ∀cj ∈ C), so

we need to know Pcj (rz = true|y). It is clear from eqs. (3) and (4) that

in order to calculate this value, what we are missing is Pcj(y|rz = true)

and Pcj(y|rz = false). Recalling that fcj (·) and gcj(·) provides us with

a probability expressing how much support cj receives from the textual or

visual low-level features of the document respectively, we incorporate the

content analysis outcome into the decision process by instantiating the nodes

of the BN as follows:

Pcj(y|rz = true) =







fcj (Ti), for textual evidence

gcj(Vi), for visual evidence
(5)

Pcj(y|rz = false) =







1− fcj (Ti), for textual evidence

1− gcj(Vi), for visual evidence
(6)

Thus, during the analysis process we inject, as explained above, the out-

put of single-medium analyzers into the BN and perform probabilistic in-

ference by propagating evidence beliefs. Eventually, the resulting posterior

probability for the “true” state of the node corresponding to the concept that

we want to detect, is considered to be the confidence degree for this concept.
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3. Cross media analysis scheme

In order to verify the benefits of the proposed modeling approach we use

it to design a cross media analysis scheme that detects high-level concepts.

High-level concept detection is usually the output of knowledge-related tasks

and typically requires the synergy of information scattered in different places.

The more the available information, the more easily is for the knowledge

worker to infer the presence of a high-level concept. Independently of whether

these pieces of information act cumulatively or complementary, they have an

impact (i.e., positive or negative) on the confidence of the fact that a certain

high-level concept is valid for the analyzed resource. In order to model this

process we rely on the approach presented in Section 2 and implement a

generative classifier based on BNs. The role of this classifier is to i) fuse the

information extracted from different media types on the grounds of knowledge

and context, ii) produce a confidence degree about the validity of a high-level

concept in the analyzed resource, and iii) make a decision by applying a fixed

threshold on this confidence degree. Since cross media analysis is mostly

about simultaneously evaluating the appropriate evidence extracted across

different media types, an important issue for making the aforementioned

framework suitable for such purposes is the strategy by which evidence (and

as a consequence their source modalities) are considered to be co-related.

In the following subsections we elaborate on the components that are

used to implement the cross media analysis scheme for compound documents,

which are: a) a dismantling mechanism and a modality synchronization strat-

egy for handling the compound media resources, b) the single-medium anal-

ysis techniques for extracting evidence using low level features, and c) the
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techniques used to construct and perform inference on a BN that is modeled

as described in Section 2.

3.1. Compound documents dismantling & modality synchronization

Compound documents are multimedia documents that incorporate more

that one media types in the same digital resource. OpenDocument, Mi-

crosoft Office’s documents, PDF and web pages are indicative representation

formats of such documents where visual and textual elements co-exist. A

compound document may contain evidence for a high-level concept to be

extracted across different media. However, it is not straightforward to know

which media elements refer to the same high-level concept. Moreover, these

documents carry additional information such as cross references or layout

features (e.g., spatial proximity between a caption and an image frame) that

have a major effect on the content essence. These features, although very

important for human perception, are difficult for knowledge extraction algo-

rithms to encode and exploit.

Document processing literature discusses several approaches to extract

layout information from PDF, HTML and other structured documents, see

[10] for an overview. Most of these approaches [11], [12] are based on manual

or semi-automatically extracted templates that characterize each part of the

document. However, the variety of layouts that a document editor is likely

to use for expressing the intended meaning, makes it difficult for automated

systems to consistently model them and make them available for analysis.

This process is further hindered by the absence of a uniform document rep-

resentation standard that could reduce the diversity of existing formats.

All the above, makes the employment of a dismantling and synchroniza-
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tion mechanism an important module of cross media analysis. This mech-

anism will be able to disassemble a compound document to its constituent

parts and decide which of these parts should be considered simultaneously by

the fusion process. For the purposes of our work, assuming a certain layout

for the analyzed documents, we accept that a different topic is covered in

each document page and disregard cases where more that one topics exist

in the same page or a single topic extents to many pages. Thus, all media

elements of the same document page are considered to be conceptually re-

lated. Given this assumption, we analyze a document on a per page basis

by fusing the output of single-medium analyzers that are independently ap-

plied on the media elements residing on the same page. Although such an

assumption may seem inconsistent with a non-negligible number of cases, in

this work we basically focus on how to effectively fuse cross media evidence

on the grounds of knowledge and context, while existing approaches can be

employed in cases where this assumption does not hold.

3.2. Single-medium analysis techniques

In this section we detail the techniques we have used to analyze the low-

level features of a document and produce confidence degrees for the related

concepts. It must be noted that although the framework described in Sec-

tion 3 concerns the analysis of compound documents containing images and

text, the part related to the methodology proposed for determining the com-

mon conceptual space, can be seamlessly applied to analyze any other type

of multimedia resource (e.g., containing video or sound), provided that the

corresponding single-medium analyzers are available. One such example is

described in Section 4.6, where we use the proposed modeling approach to
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implement a video shot classification scheme.

3.2.1. Visual analysis

Visual evidence is extracted by applying concept detectors on the images

contained in a document page. The method adopted for implementing the

concept detectors is based on the Viola and Jones detection framework [13].

The functionality of this framework can be characterized by three key aspects,

a) a scheme for image representation called integral image, that allows for

very fast feature extraction, b) a method for constructing a classifier by

selecting a small number of important features using AdaBoost [14], and c)

a method for combining successively more complex classifiers in a cascade

structure, which dramatically increases the speed of the detector by focusing

attention on promising regions of the image.

In more detail, the visual information contained in an image is described

by Haar-like features, introduced in [15] and depicted in Fig. 2. The val-

ues of these features are the differences between the sums of the white and

black rectangular regions. In order to compute these sums efficiently, Viola

and Jones make use of integral images. An integral image is an array corre-

sponding to an image that contains in position (x, y) the sum of the intensity

values of all pixels above and to the left of (x, y). For the Haar features that

are rotated by 45o, a rotated integral image is used, which accumulates the

values inside a triangle starting from point (x, y) and ending at the top of the

image. The construction of an integral image requires a linear scan through

the actual image and results in computing the feature responses in constant

time. The efficient computation of the feature responses is essential, since all

of them are computed at all positions and scales in an image, resulting in a
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Figure 2: Haar-like features. The values of these features are the differences between the

sums of the white and black rectangular regions.

very dense representation of approximately 100,000 feature responses for an

image of size 20x20 pixels.

Then, the AdaBoost algorithm is used in order to train a classifier for

an object category. AdaBoost creates a degenerate decision tree based on

the responses of m Haar features that best describe the depicted concept.

Classification time is reduced by using several low precision, fast classifiers

connected in a cascade, instead of one high precision and slow classifier. In

order to classify a sub-window of an image as positive (depicting the object),

the sub-window has to be classified as positive by all the classifiers in the

cascade, also called stages. If a sub-window is classified as negative (not

depicting the object) by any single classifier, then it is rejected and not

processed by the following stages, as depicted in Fig. 3. The detection task

of finding the precise position and scale of the object is performed in a sliding

window manner, checking every possible position and scale.

The output of the local concept detector is the exact position and scale

at which a concept cj was found in the analyzed image, as well as a con-

fidence degree associated to every detection result. The confidence degree

is extracted from the detectors inner structure, as depicted in Fig. 3. More
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Figure 3: Confidence value derived from the cascade of classifiers.

specifically, the output of each classifier in the cascade is associated with

a confidence degree Si derived by a combination of the calculated decision

thresholds. These thresholds are related to the partial or full detection of

the concept of interest. The values extracted from all classifiers of the cas-

cade, are then combined in a weighted sum to provide a confidence value for

each examined sub-window. The weights wi applied to each stage output,

emphasize the response of the last stages which are more discriminative than

the initial low precision ones. The confidence value is then normalized in [0

1], based on the training set used to create the detector. For the purposes

of our work we filter out cases with a very small confidence degree and we

select the case with maximum confidence degree when multiple instances of

the same concept are found on the same image.

3.2.2. Textual analysis

For obtaining textual evidence we need to estimate the semantic relat-

edness of a concept with the linguistic information contained in a document

page. In order to do so, we should be able to measure the semantic re-
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latedness between any two individual concepts and apply a page oriented

summarization strategy, as detailed later in this section. Approximating hu-

man judgement and measuring the semantic relatedness between concepts

has been a challenging task for many researchers. Most works in the lit-

erature make use of the WordNet lexical database [16] for achieving this

objective.

WordNet can be viewed as a large graph where each node represents a real

world concept and each link between nodes represents a relationship between

the corresponding concepts. Every node consists of a set of words (synset),

that linguistically describe the real world concept associated with the node, as

well as a short description of this concept (gloss). Using the above, WordNet

encodes a significantly large amount of knowledge and is able to facilitate a

great number of methods determining the semantic relatedness between con-

cepts. Methods existing in the literature can be divided to the ones that use

only the structure and content of WordNet to measure semantic relatedness

[17], while others achieve this by also exploiting statistical data from large

corpora, [18], [19], [20], [21], [22]. Another important characteristic of such

methods is whether they are able to operate on all parts of speech [22], [20]

or nouns only [17], [18], [19], [21]. For the purposes of our work we decided

to employ a semantic relatedness measure that is based on context vectors

and was originally presented by Patwardhan in [23]. The method introduced

in this work relies on a different representation for WordNet glosses that is

based on multidimensional vectors of co-occurrence counts. Its main advan-

tage derives from its ability to combine the benefits of methods that use the

knowledge from a large data corpus and the ones that rely solely on the strict
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definitions of WordNet (glosses).

In order to describe the method in more detail we need to determine the

meaning of word vectors and context vectors. Every word in the word space

has a corresponding word vector. The word vector corresponding to a given

word is calculated as a vector of integers. The integers are the frequencies

of occurrence of each word from the word space in the context. The context

of a word is considered to be the words that appear close in the text with

this word. Thus, each word in the word space represents a dimension of the

vector of integers. Once the word vectors for all words in the word space are

calculated, they are used to calculate the context vectors for every instance

of a word. This is done by adding the word vectors of all words that appear

in the context of this word.

In order to measure the semantic relatedness between two concepts the

method of [23] represents each concept in WordNet by a gloss vector. A gloss

vector is essentially a context vector formed by considering a WordNet gloss

as the context. More specifically, having created the word vectors for all

words in the word space, the gloss vector for a WordNet concept is created

by adding the word vectors of all words contained in its gloss. For example,

consider the gloss of lamp - an artificial source of visual illumination. The

gloss vector for lamp would be formed by adding the word vectors of artificial,

source, visible and illumination.

Eventually, the semantic relatedness between two concepts is defined as

the cosine of the angle between the corresponding normalized gloss vectors:

SemanticRelatedness(c1, c2) =
−→v1 ·

−→v2
|v1|v2|

(7)
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where c1, c2 are the two given concepts, and −→v1 ,
−→v2 are the gloss vectors

corresponding to the concepts. The motive behind our choice of relying on

context vectors over the other existing measures for semantic relatedness is

threefold. Context vectors are able to: i) exploit information both from a

large data corpora as well as from the WordNet descriptions (glosses), ii)

handle all different parts of speech possing no limitations on the amount

of linguistic information contained in a document page that can be used to

derive an overall degree of semantic relatedness with the query concept, iii)

produce values normalized to [0,1], which is crucial for our analysis given the

probabilistic standpoint of our framework.

After having defined a method for measuring the semantic relatedness be-

tween any two individual concepts, we need a methodology for extracting the

overall semantic relatedness between a concept and the linguistic informa-

tion contained in a document page. In order to do so, we use the previously

described approach to measure the semantic relatedness between the word

expressing the concept of interest and all words contained in a document

page. In this way we get as many semantic relatedness values as the number

of words contained in the document page. Subsequently, we only consider

the words with semantic relatedness above the 64% of the maximum seman-

tic relatedness value of all words in this page. This percentage was found to

yield optimal performance in a series of preliminary experiments. By averag-

ing between the selected values we get a number between [0,1] that indicates

the semantic relatedness of the query word with the linguistic information

contained in a document page. This number is used as the confidence degree

of this concept for the examined document page.
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3.3. Constructing, training and performing inference on the BN

In Section 2 we have described how to model a Bayesian Network so

as to allow the combination of heterogeneous types of information. In this

Section we describe how the explicit knowledge expressed in an ontology

is used to determine the network structure, as well as how the contextual

knowledge that is implicit in the training data is extracted using a learning

algorithm. Moreover, we refer to the algorithm employed for performing

evidence-driven probabilistic inference using as evidence the output of single-

medium analyzers.

3.3.1. Integrating explicit & implicit knowledge into a BN

Ontologies have emerged as a very powerful tool able to express knowl-

edge in different levels of granularity, handle the diversity of content essence,

and govern its semantics [24]. The general knowledge about a specific do-

main can be expressed by a structure KD that associates the domain con-

cepts and relations using the allowable operators. An algorithm able to

traverse this structure can answer questions like whether two concepts are

related, or what type of relation associates these concepts. On the other

hand, BNs are directed acyclic graphs whose nodes represent random vari-

ables and whose arcs encode the conditional dependency between them. In

order to integrate the knowledge expressed explicitly by an ontology into

a BN, we need to determine a set of rules for mapping ontological ele-

ments (i.e., concepts and relations) to graph elements (i.e., nodes and arcs).

The structural translation rules described in [25] were adopted for deter-

mining the structure of the BN out of an OWL ontology [26]. Specifically,

all concepts are directly translated into network nodes (i.e., discrete vari-
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ables). Then, an arc is drawn between two nodes in the network if the

corresponding two concepts are related by a “rdfs:subClassOf” relation in

KD. Additionally, the methodology of [25] describes also how to create

specific subnetworks for modeling the ontology constraints between concept

nodes (i.e., owl:disjointWith, owl:unionOf, owl:intersectionOf, owl:unionOf,

owl:complementOf, owl:equivalentClass). However, these properties are not

exploited in this work since no such need arise from the domain ontology.

In order to tackle the problem that an arc in a BN does not necessarily im-

ply causality, we have followed the methodology proposed in [25] where an arc

is drawn between two concepts if they are related with the “rdfs:subClassOf”

relation and according to the relation direction (i.e., from superclass to sub-

class). By systematically applying all structural translation rules we deter-

mine the structure of a BN, based on the explicit knowledge expressed in an

OWL ontology. Apart from ontologies, other representation structures capa-

ble of reflecting human experience exists, such as causal maps [27]. However,

the use of ontologies was advocated by their wide acceptance and appeal in

representing knowledge for various domains.

Concerning the knowledge implicit in the data it is essentially translated

into the prior and conditional probabilities associated with each node in the

BN. More specifically, the CPTs of all network nodes are learned by apply-

ing the Expectation Maximization (EM) algorithm on a set of compound

documents annotated with concept labels. EM [28] estimates the prior and

conditional probabilities for each node by iterating between an expectation

(E) and a maximization (M) step. During the expectation step the expected

values for all data are calculated using the underlying BN and applying reg-
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ular Bayes inference. The maximization step finds the maximum likelihood

of a BN given the now extended data. The importance of using accurate

and meaningful data for estimating the probabilistic information of the BN

has been well studied in the literature [29]. Typical sources for probabilis-

tic information are (statistical) data, literature (e.g., medical handbooks or

journals where probabilistic information is given about medical disorders and

symptoms), and human experts. In our work we have decided to follow the

(statistical) data approach and apply the EM algorithm on training data.

The reason for adopting this approach rather than setting the necessary

probabilities manually, was on the one hand to avoid the need for human

intervention when switching to a different domain and on the other hand to

avoid bias on the initial conditions of the network. However, when using

(statistical) data as the source of probabilistic information, special care will

have to be taken so as no bias is introduced as the result of the data collection

strategy. Such bias is likely to affect the performance of the resulting BN

and can not be easily detected once the BN has been constructed. The (sta-

tistical) data used in our work have been collected so as to form a balanced

(i.e., ensuring approximately proportional presence of each concept in both

train and test set) sample of the population that is being modeled. Thus,

the probability of introducing bias to the resulting BN was minimized.

3.3.2. Evidence-driven probabilistic inference

In order to perform evidence driven probabilistic inference on the con-

structed BN we rely on message passing algorithms. Pearl [30] introduced a

message passing mechanism where messages are exchanged between parent

and child nodes carrying the information required to update their beliefs.
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Although intuitively consistent, the message passing algorithm proposed by

Pearl suffer from scalability issues due to the excessive number of messages

that need to be exchanged over the network. In order to overcome this

deficiency, Lauritzen and Spiegelhalter [31] exploit a range of local repre-

sentations for the network joint probability distribution so as to reduce the

number of messages that need to be exchanged. The junction tree [32], that

was used to conduct our experiments, is an algorithm that takes advantage

of such local representations and to the best of our knowledge is the most

efficient and scalable belief propagation algorithm.

4. Experimental Study

The goal of our experimental study was to evaluate our proposed method-

ology in three different aspects: i) how much improvement is achieved by the

employment of the proposed cross-media analysis scheme compared to single-

medium solutions, ii) whether the choice of a generative over a discriminative

model is more suited for fusing evidence coming from heterogeneous sources,

and iii) whether the additional cost of engineering an ontology for expressing

domain knowledge, actually pays off in terms of efficiency when compared

with less costly approaches like using a simplified BN or learning its structure

from data using the K2 algorithm [33]. Finally, we have verified the efficiency

of our framework to more general application, by using the proposed model-

ing approach to implement a video shot classification scheme.

4.1. Testbed

The domain selected for performing our experimental study concerns fore-

casting the launch of competitors’ models, as defined in cooperation with
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Centro Ricerche Fiat (CRF)1. The goal of a competitor analysis department

is to constantly monitor the existent competitors’ products, understand mar-

ket trends and try to anticipate customer needs. The information needed to

achieve that, is scattered throughout the Internet (i.e., blogs and forums),

and covered by a long tail of international and national automotive maga-

zines. In a typical scenario the main role is played by the person responsible

for data acquisition that has the responsibility of daily inspecting a number

of resources such as WWW pages, car exhibitions, car magazines, etc, that

are likely to publish material of potential interest. The collected information

is subsequently used in the set-up stage of new vehicles (i.e., the development

stage where a first assessment of the future vehicle’s features is carried out).

This process is of great value to many companies because it contributes to

keeping new products design up to date.

One of the tasks defined by the experts was to be able to automatically

evaluate a document with respect to its interest for the car components er-

gonomic design. The fact that most of the collected documents use both

visual and textual descriptions, motivated the construction of a cross media

classifier recognizing compound resources that are valid for the high-level

concept car components ergonomic design.

For the purposes of our evaluation a dataset of 162 pdf documents (con-

taining 1453 pages) was collected, that are primarily advertising brochures

describing the characteristics of new car models. Each pdf document was

dismantled into its visual and textual constituent parts using the xpdf li-

1http://www.crf.it/
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brary2. All media elements extracted from the same page were kept together

so as not to lose any conceptual relations originating from the document’s

layout. The linguistic information was gathered in a single text file while the

visual representations were extracted to independent image files as depicted

in Fig. 4.

Figure 4: Dismantling a pdf document to its constituent parts

Two different manual annotation efforts were carried out for the purposes

of our work. Since we have decided to consider the pdf documents on a

per page basis, the first annotation effort was to manually inspect each of

the 1453 document pages and record in an annotation file whether they

are valid for the high level concept car components ergonomic design. The

second annotation effort involved going through all 1453 document pages

and marking for each page which of the ontology concepts are present or not.

The result of this annotation process was a set of concept labels for each of

the 1453 document pages, suitable for measuring the co-occurrence between

2http://www.foolabs.com/xpdf/
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any two concepts of the domain. These sets of concept labels were used to

learn the CPTs of the BN nodes. In cases where the total amount of training

samples is large and their manual annotation with concept labels becomes

tedious, alternative sources of annotation can be used, such as the social

networks. The rapid growth of social media, that emerged as the result of

users willingness to communicate, socialize, collaborate and share content,

has resulted in the generation of a tremendous volume of user contributed

data. These data have been made available on the Web, usually along with

an indication of their meaning (i.e., tags). Although these data usually come

with a high level of noise, they exhibit noise reduction properties given that

they encode the collective knowledge of multiple users. Thus, the CPTs

can be learned by exploiting the abundant availability of tagged images in

social networks, which can be used to acquire the information about the co-

occurrence of concepts in a domain. Out of the 162 documents, 149 (928

pages) were used for training I train the BN (see Section 3.3) and 13 (525

pages) were used for testing I test.

4.2. High level concept detection using the cross media analysis scheme

For conducting our experiments we have engineered three ontologies (one

for each of the evaluated cases: textual-only, visual-only and cross media)

that are mostly concerned with concepts related to the ergonomic design of

car components. All three ontologies were engineered based on the knowl-

edge acquired by going through a sufficient number of related documents and

getting acquaintance with the domain details. These ontologies were used

to determine the structure of three different BNs (one for each evaluation

case). In all cases, the node modeling the high-level concept car components
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ergonomic design was the root node of the constructed BN. For learning

the CPTs of the BN nodes, the Expectation Maximization algorithm was

applied on I train. Depending on the concepts included in the employed on-

tology, only the annotations referring to these concepts were included in the

corresponding training set.

After constructing the BNs the analysis process runs as follows. De-

pending on the examined case (textual-only, visual-only, or cross media) the

single-medium analyzers are applied on the constituent parts of a document

page. Their probabilistic output is injected into the BN nodes as described

in Section 2. This triggers an inference process that progressively modifies

the posterior probabilities of all connected nodes in the network using mes-

sage passing belief propagation. When the process is completed the posterior

probability of the root node modeling the high-level concept car components

ergonomic design (represented with the CA ED symbol in all figures), is

compared against a fixed threshold. If the threshold is exceeded the detector

decides positively, otherwise the document page is considered as not being

relevant with the ergonomic design of car components. An illustration of

this procedure for the cross-media case is depicted in Fig. 5. For measuring

the efficiency of the high-level concept detector we have used recall versus

precision curves. The threshold value of Fig. 5 is uniformly scaled between

[0,1] for conducting the experiments in all cases.

4.3. Single vs Cross media analysis

In the case of visual-only analysis, the general knowledge about the spe-

cific domain was expressed by the ontology depicted in Fig. 6(a). This on-

tology associates five visual concepts, namely air ducts, steering wheels, gear
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Figure 5: Inference process illustration for the cross media setting

levers, car pedals and interior with the high-level concept car components er-

gonomic design. The trained BN used for this setting is depicted in Fig. 6(b).

Five detectors trained to identify the five concepts of the domain ontology

were implemented using the method of Section 3.2.1. These detectors were

trained using an independent dataset of 3230 images depicting car interiors

that was strongly annotated at region-detail. Each of these detectors was at-

tached to the corresponding BN node of Fig. 6(b) and was used to trigger the

process of probabilistic inference. By applying these five detectors on every

image contained in a document page and using their output to instantiate

the network nodes, we are able to decide about the existence of the high-level
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concept car components ergonomic design in a document page, based solely

on the information depicted on the images of this page. The obtained results

are depicted in Fig 11.

(a) (b)

Figure 6: Experimental setting using only visual concepts, a) Domain ontology for docu-

ment analysis using only visual evidence, b) Bayesian Network for visual analysis

In the case of textual-only analysis, we used eighteen different concepts,

namely access, cabin, design, leisure, comfort, easy, enjoy, luxury, room, ten-

der, ergonomic, equipment, innovative, usable, practical, functional, adapt-

able and control for obtaining the textual evidence. Using these eighteen

concepts we constructed the ontology of Fig. 7 that encodes the associations

between the textual concepts and the high-level concept of car component

ergonomic design. The trained BN used in this setting is depicted in Fig. 8.

The confidence degrees that are used to instantiate the BN nodes are obtained

by applying the textual analysis method described in Section 3.2.2 for each

document page and using the above linguistic descriptions as query words.

As in the previous case this setting allows us to decide about the existence of
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the high-level concept car components ergonomic design in a document page,

based solely on the information included in the textual descriptions of this

page. The precision versus recall curve obtained from textual-only analysis

is depicted in Fig 11.

Figure 7: Domain ontology for document analysis using only textual concepts

For the case of cross-media analysis, both textual and visual concepts were

used for the construction of the ontology depicted in Fig. 9. This ontology

expresses the domain knowledge across media and reflects the cross-relations

between textual and visual concepts. The trained BN that was used for

performing inference in this setting is depicted in Fig. 10. The confidence

degrees obtained by applying the aforementioned textual and visual single-

medium analyzers on the constituent parts of a document page, are used to
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Figure 8: Bayesian Network for textual-only analysis

instantiate the BN nodes and perform inference using evidence across media.

The results achieved by the high level concept detector in this setting are

depicted in Fig 11.

It is clear from the comparative diagram of Fig. 11 that the configuration

of the framework using evidence across media, outperforms the cases where

evidence originates exclusively from one media type. We can see that textual

analysis performs significantly better than visual analysis mainly due to the

increased number of evidence that have been used in this setting. However,

when the textual and visual evidence are combined in the cross media setting,

the high-level concept detector manages to further improve its efficiency for
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Figure 9: Domain ontology for document analysis using both visual and textual concepts

most of the applied threshold values. In conclusion, with this experiment

we verify that there are cases where the evidence existing across different

media types carry complementary information, that can only be translated

into facts when considered in a synergetic fashion.

4.4. Generative vs Discriminative model

The second goal of our experimental study was to investigate the superi-

ority of generative models like BNs over discriminative models like Support

Vector Machines (SVMs) [34], to more efficiently incorporate and benefit from

explicit knowledge. The motive behind using BNs in our work was their abil-
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Figure 10: Bayesian Network for cross media analysis

ity to smoothly incorporate explicit knowledge through their parameters and

structure, as well as to learn efficient models from small training sets. This

is in contrast to the approaches based on SVMs, since there is no straight-

forward way to incorporate explicit knowledge in these cases, as it can only

be done at the level of the kernel. Moreover, when relying on SVMs, robust

models can only be learned when there is a significant number of training

samples available.

In order to verify the above, we compared our generative classifier based

on BNs with a discriminative classifier implemented using SVMs. The feature

space for training the SVM models was determined by concatenating the
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Figure 11: Cross vs single media analysis performance

confidence degrees generated from the single-medium analyzers, resulting

in a 23-dimensional feature vector for each document page. The SVMlight

library [35] was employed for learning an one-class classifier recognizing the

concept car components ergonomic design, using the same train/test split

as in the case of BNs. A polynomial kernel function was used for learning

the SVM models. Since the one class SVM models are known to be rather

sensitive on the ratio between positive and negative examples, we have tried

4 different ratios (i.e., 1/1, 1/2, 1/3 and 1/4) in order to optimally tune the

classifier. Using the full train set the positive/negative ratio is approximately

1/4. The bar diagrams of Fig. 12(a) shows the F-measure scores achieved by

the SVM-based classifiers using all four positive/negative ratios, as well as

the score achieved by the BN classifier for the optimal threshold value. We

can see that the BN classifier outperforms all SVM-based classifiers with the

smallest improvement being ≈ 3% (1/3 case) and the largest being ≈ 12%
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(1/4 case).

Moreover, in order to verify that, in contrast to SVMs, BNs are able

to learn efficient models even from just few examples, we performed several

experiments by reducing the number of samples included in the train/test

datasets. Fig.12(b) shows the F-measure scores achieved using both ap-

proaches for four different scales of the train/test datasets. For this experi-

ment the SVM-based classifiers were trained using all positive and negative

samples included in each of the different dataset scales. It is clear that the

models learned using BNs manage to deliver good performance even when

trained with a particularly small number of samples. This is not the case for

the models learned using SVMs, where the number of training samples needs

to grow at approximately 600 in order to deliver good results. Both experi-

ments verify the superiority of generative models in handling prior knowledge

more efficiently and learning from a few examples. This attribute is partic-

ularly useful in cross media analysis since the cost of manual annotation in

a cross media fashion is even higher from the single-medium cases, making

the generation of a significant number of training examples very expensive.

4.5. Cases with missing or noisy domain knowledge

It is evident that our framework benefits from the existence of knowledge

about the domain. However, there can be cases where such knowledge is

either noisy or missing (i.e., the list of domain concepts is known but the re-

lations between them are not). In such cases, our framework can be applied

using either a trivial structure for the BN, or using a BN the structure of

which is determined from sample data. In order to evaluate the performance

of our framework when domain knowledge is noisy, we have considered the
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Figure 12: a) Comparing generative with discriminative models using different ratios for

the positive/negative examples b) Comparing generative with discriminative models using

different scales for the train/test datasets

following two approaches for determining the structure of the BN. The first

approach assumes the most trivial structure for the BN and initiates our

framework using a naive BN. The naive BN is the simplest classifier based

on Bayes’ rule, it assumes that all variables are independent from each other

and all nodes are directly connected to the root node. The second approach

is based on methods that are able to derive the structure of the BN from sam-

ple data. One such method is [36] where prior knowledge, provided in the

form of a temporal BN called prior network, is combined with sample data

in order to learn one or more BNs that are much closer to the actual struc-

ture of the domain than the initial prior network. A similar method is the

well-established, score-based Cooper’s K2 algorithm [33] which attempts to

recover the underlying distribution of nodes in the form of a Directed Acyclic

Graph (DAG), without making any assumptions about their structure. For
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the purposes of our work we have decided to employ the K2 algorithm in

order to evaluate the performance of a BN, the structure of which is deter-

mined without using any prior information about the relations between the

domain concepts.

More specifically, the K2 algorithm takes as input the number and or-

dering of nodes (n = 24 in our case), an upper bound for the parents of its

node and a set of training data, which in our case correspond to the concept

label annotations described in Section 4.1. The set of nodes includes the 23

visual and textual concepts as well as the high level concept car components

ergonomic design. The ordering of the nodes was determined based on the

frequency of appearance (in descending order) of the corresponding concepts

in the training data. In order to avoid networks with high complexity we

have set the upper bound of parent nodes to be four. The BN generated

using the K2 algorithm is depicted in Fig. 13. In Fig. 14, we compare the

performance achieved by a BN constructed based on the cross media domain

ontology as described in Section 3.3.1, against the performance of a naive

BN and the performance of a BN, the structure of which is determined using

the K2 algorithm. In all cases, inference was performed as described in Sec-

tion 3.3 and the curves were drawn by modifying the threshold value between

[0,1].

It is clear from the results that the incorporation of explicit knowledge is

particularly useful when combining information from heterogenous sources.

We can see that the BN using the ontology, clearly outperforms the naive

and K2 algorithm-based approaches. This is attributed to the fact that the

domain ontology manages to capture the underlying cross-modal relations
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Figure 13: Bayesian Network derived from sample data using the K2 algorithm

and boost the classification performance. Moreover, the fact that the naive

BN approach achieves better results from K2, further advocates the need for

incorporating explicit knowledge (even as a simple two level hierarchy) when

combining information from heterogeneous sources.

4.6. Video shot classification

In order to verify the efficiency of our BN modeling approach to more

general applications, we have used it to implement an ontology-based classi-

fier for video shots. For building and evaluating this classifier we have relied
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Figure 14: Comparative diagram for the different methods used to determine the BN

structure

on the TRECVID2010 development dataset IACC.1.tv10.training3, that has

been provided by TRECVID organizers to facilitate training in various dif-

ferent tasks of 2010 competition. The dataset is composed of 118581 shots

annotated with 130 concepts4. The reason for choosing this dataset over the

datasets used in the previous years, was that 2010 was the first year where

the organizers provided an ontology with the relations between 104 of the 130

available concepts. The availability of such ontologies is an important motiva-

tion for employing the proposed modeling approach, since the incorporation

of domain knowledge in the analysis process is one of its great advantages.

In order to facilitate training and testing we have split the 118581 shots to

59291 training T train and 59290 testing T test shots.

3http://www-nlpir.nist.gov/projects/tv2010/tv2010.html#IACC.1.tv10.training
4http://www-nlpir.nist.gov/projects/tv2010/TV10-concepts-130 UPDATED.xlsx
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4.6.1. Engineering the ontology and building the BN

By examining the ontology relations provided with the dataset, we ob-

served that there were 9 concepts, namely Person, Outdoor, Indoor, Vege-

tation, Vehicle, Politics, Animal, Sports, Science Technology, that acted as

super-classes of all other concepts in the ontology. Based on this fact, and

given that the goal of our approach is to infer the presence of a high-level

concept by accumulating the effect of the existing evidence, we consider these

9 concepts to be the root concepts or our ontologies. Then, we implement

a multi-class classifier for these concepts using cross media analysis. Out of

the remaining 95 concepts, 45 we chosen as textual concepts based on the

availability of Automatic Speech Recognition (ASR) transcripts for a rela-

tively high number of the shots annotated with these concepts. This selection

strategy was motivated by the need to ensure that there will be sufficient tex-

tual information to extract evidence for the textual concepts. The remaining

50 concepts were considered as visual. When considering the textual-only

or visual-only analysis case, the root concepts are only supported by the 45

textual or the 50 visual concepts, respectively. In the cross media analysis

case all available concepts are used. The output of the multi-class video-

shot classifier is a confidence degree for each of the 9 root concepts. Crisp

decisions can be taken by applying a threshold on these confidence degrees.

Having engineered the ontologies for the three analysis cases (i.e., textual-

only, visual-only and cross media), we used the methodology described in

Sections 2 and 3.3.1 to construct the corresponding BNs. The CPTs were

learned by applying the EM algorithm on the concept labels of the shots

included in T train and probabilistic inference was performed as described in
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Section 3.3.2.

4.6.2. Modality synchronization

Each of the shots included in the TRECVID2010 development datasaet

consists of its key-frame (i.e., an image) and the ASR transcripts of the

spoken dialogs within the shot time-frame. In this case we consider that a

conceptual relations exists between the key-frame and the ASR transcript

of a shot. Thus, classification is performed for every shot by combining the

visual and textual evidence extracted from the corresponding key-frame and

ASR transcript, respectively.

4.6.3. Single-medium analysis

For extracting the likelihood estimates of the textual concepts we have

employed the textual analysis approach described in Section 3.2.2. In this

case, the values of semantic relatedness are estimated between the textual

concept and every word included in the ASR transcript of the analyzed shot.

By averaging the semantic relatedness values as described in Section 3.2.2

we obtain a likelihood estimate per textual concept, for each shot.

Due to the fact that the annotations provided by TRECVID are at the

global level of the image and not at the level of regions, as required by the

technique of Section 3.2.1, we have employed a different method for visual

analysis. In this case, the visual representation of the images was extracted

by applying the feature extraction technique described in [37]. More specif-

ically, a set of interest points was detected in every image by applying the

Harris-Laplace point detector on intensity channel [38]. For each of the iden-

tified interest points a 128-dimensional SIFT descriptor was computed using
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the version described by Lowe [39]. Then, a Visual Word Vocabulary (Code-

book) [40] was created by using the K-Means algorithm to cluster in 500

clusters, approximately 3 million SIFT descriptors that were sub-sampled

from a total amount of ≈200 million SIFT descriptors, extracted from ≈120

thousand training images. The Codebook allows the SIFT descriptors of all

interest points to be vector quantized against the set of Visual Words and

create a histogram of 500 dimensions. Finally, additional histograms were

extracted from specific parts of the image. Using a 2x2 subdivision of the

image, one histogram was extracted for each image quarter. Similarly, using

a 1x3 subdivision consisting of three horizontal bars, one histogram was ex-

tracted for each bar. In the end all histograms were concatenated to form

a 4000-dimensional visual representation of the image. After obtaining the

visual representation of the images, Support Vector Machines (SVMs) [34]

were used for generating the concept detection models. The 59291 key-frames

included in T train were used for training the concept detection models. Tun-

ing arguments included the selection of Gaussian radial basis kernel and the

use of cross validation for selecting the kernel parameters.

4.6.4. Video-shot classification results

The performance of our video-shot classifier was evaluated on T test, for

the cases of visual-only, textual-only and cross media analysis. In Fig. 15 we

report results for the 9 root concepts. Fig. 15(a) depicts the precision-recall

curves achieved by each analysis case. The curves are obtained by uniformly

scaling the decision threshold between [0,1] and averaging between all root

concepts. As expected the video-shot classifier incorporating evidence across

media outperforms the classifiers that incorporate only textual or only visual
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information. In contrast to the analysis results on compound documents

reported in Fig. 11, in this case the video-shot classifier based on visual

analysis performs better than the classifier relying on textual analysis. This

can be attributed to the low quality of ASR transcripts or the complete

absence of transcripts for a non-negligible amount of shots.
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Figure 15: Cross vs single media analysis performance using TRECVID2010 dataset a)

Precision-recall curves obtained by uniformly scaling the decision threshold between [0,1]

and averaging between all root concepts, b) Average precision scores for the 9 root concepts

In Fig. 15(b) we report the Average Precision (AP) scores for the 9 root

concepts, since this is the metric used by the TRECVID organizers. We can

see that the improvement in performance achieved by the cross-media classi-

fier is consistent across all root concepts and in certain cases by a significant

amount, as in the case of Sports. Our experimental results show that the su-

periority of the cross media classifier over its single-medium counterparts is

evident in all experimental settings, advocating the efficiency of the proposed
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approach for modeling the BN.

In order to compare our work with existing state-of-the art methods, we

have relied on the evaluation results released by the organizers of TRECVID2010

for the task of Semantic Indexing. In the context of this task all submissions

were evaluated for a set of 30 concepts5, subset of the total set of 130 con-

cepts. In order to facilitate the comparison of our work with the methods

participated in the competition, we have employed a modified version of our

video shot classifier. This version works in a similar way with the previ-

ous case, with the additional functionality that likelihood estimates are also

given for the root nodes of the BN, providing useful evidence for the existence

of their child nodes. In this way we manage to obtain inferred confidence

degrees for 26 of the concepts that have been used for evaluation. No confi-

dence degrees were obtained for the concepts Doorway, Explosion Fire, Hand,

Telephones, since they were not included in the ontology provided by the or-

ganizers. Fig. 16 compares the Average Precision achieved by our framework

against the top-scoring run and the average performance among all 101 runs,

submitted for the Semantic Indexing task [41].

It is important to note that the performance figures depicted in Fig. 16

are not directly comparable due to the following reasons. The dataset used

for training and testing are not identical, since we have trained our classifier

5Airplane flying, Animal, Asian People, Bicycling, Boat-ship, Bus, Car Racing, Cheer-

ing, Cityscape, Classroom, Dancing, Dark-skinned People, Demo or protest, Doorway,

Explosion Fire, Female-Human-Face-Closeup, Flowers, Ground Vehicles Hand, Mountain,

Nighttime, Old People, Running, Singing, Sitting Down, Swimming, Telephones, Throw-

ing, Vehicle, Walking
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Figure 16: Comparison of our framework for 26 concepts against the top-scoring method

and the average performance among all 101 runs, submitted for TRECVID2010 Semantic

Indexing task.

using half portion of the development dataset and evaluated its performance

using the other half. On the contrary, the methods submitted for the Se-

mantic Indexing competition used the full development dataset for training

and evaluated their performance using an independent test set. Moreover,

the performance scores provided by the organizers refer to the Inferred Aver-

age Precision [42] which is an approximation of Average Precision when the

available annotations are incomplete. The figures provided for our frame-
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work refer to Average Precision since we had complete annotations for our

test set. Despite the above, it is clear that our method compares favorably

with the performance achieved by the state-of-the-art methods. Among the

26 evaluated concepts our method outperforms the top-scoring methods in

11 and surpass the average performance score in 21 cases. The Mean Average

Precision achieved by our framework (15.4%) is improved by 1.3% compared

to the Mean Average Precision of the top-scoring methods (14.1%) and by

11.4% compared to the average performance scores (4%).

5. Related Work

In the research field of multimedia analysis, indexing and retrieval, var-

ious methods have been proposed for fusing the evidence extracted from

different media sources. Statistical methods are widely used for multimodal

integration [43], where the query object is classified based on the distribution

of patterns in the space spanned by pattern features. The most frequently

encountered methods are Bayesian Networks that assign a pattern to the

class which has the maximum estimated posterior probability, and Hidden

Markov Models (HMM) that assign a pattern to a class based on a sequential

model of state and transition probabilities.

In this context, our study can be considered to share similar objectives

with various works in this field. Within the scope of probabilistic inference,

Hospedales and Vijayakumar [44] implement a multisensory detection, veri-

fication and tracking mechanism by inferring the association between obser-

vations. More specifically, in order to solve the who-said-what problem they

present a principle probabilistic approach, where Bayesian inference is used
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for combining multiple sensing modalities. The proposed model is claimed to

be sufficient for robust multitarget tracking and data association in audiovi-

sual sequences. In [45] Choi et al. present three classifier fusion methods and

evaluate their efficacies on raw data sets. They use class-specific Bayesian

fusion, joint optimization of the fusion process and individual classifiers, and

employ dynamic fusion for combining the posterior probabilities from indi-

vidual classifiers. The results of the proposed approaches are generally better

than the majority voting and the naive Bayes fusion approaches, and signifi-

cantly reduce the overall diagnostic error in automotive systems. Compared

to Bayesian Networks, Hidden Markov Models are capable not only to in-

tegrate multimodal features but also to include sequential features. In [46]

the MFHMM (Multistream Fused Hidden Markov Model) is presented as a

generalization of a two-stream fused HMM [47] for integrating coupled audio

and visual features. MFHMM is used for linking the multiple HMMs and is

claimed by the authors to be an optimal solution according to the maximum

entropy principle and the maximum mutual information criterion. In [48]

the authors rely on SVMs and present a late fusion scheme where the uni-

modal features are initially used to learn separate concept classifiers. Then

the output of these classifiers are concatenated to determine a new feature

space and learn an SVM-based integrated concept classifier.

Recently, semi-supervised graph-based methods have also attracted the

interest of researchers for narrowing the semantic gap between the low- and

high-level features. Hoi et al. [49] present multi-modal fusion through graphs

in addition with a multilevel graph-based ranking scheme for content-based

video retrieval. They present the semi-supervised ranking (SSR) method
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to exploit both labeled and unlabeled data effectively and further explore a

multilevel ranking solution to solve the scalability problem of SSR. The pro-

posed multilevel ranking scheme achieves good performance for large scale

applications and also provides a solution to the overfitting problem. In the

same direction, Wang et al.[50] present the OMG-SSL method, optimized

multigraph-based semi-supervised learning, as an efficient video annotation

scheme. The proposed approach is equivalent to fusing multiple graphs and

then conducting semi-supervised learning on the fused graph. According to

the results, the OMG-SSL method improves the learning performance and

can be easily extended through utilizing more graphs. The work in [51] pro-

poses a fusion framework in which classification models are build for each

data source independently. Then, using a hierarchical taxonomy of concepts,

a Conditional Random Field (CRF) based fusion strategy is designed. Ac-

cording to the fusion scheme described in this work, a graph is defined over

the hierarchical taxonomy (i.e., a tree over categories) where its node repre-

sents a category. The scores from different unimodal classifiers referring to

the same category are concatenated in a feature vector, which serves as the

observation of the corresponding node. This work is very similar with our

approach from the perspective of integrating explicit knowledge into the anal-

ysis process. However, in this case the scores obtained from the unimodal

classifiers are concatenated to form the observation vector for each node.

The advantage of our approach over this work is that we use the space of

likelihood estimates as a “lingua franca” between the heterogeneous types of

information, removing the need to homogenize the output of unimodal clas-

sifiers. A semi-supervised approach is employed in [52] where the authors
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propose to facilitate the learning process by integrating both visual and lin-

guistic information, as well as unlabeled multi-modal data. Their approach

is based on co-training which is a semi-supervised learning algorithm that

requires two distinct “views” of the training data. Co-training first learns a

separate classifier for each view using labeled examples. The most confident

predictions of each classifier on the unlabeled data are then used to itera-

tively construct additional labeled training data. Compared to our work the

aforementioned approach is unable to exploit the prior information derived

from the co-occurrence of concepts, as well as the knowledge derived from

the domain.

ClassView [53] is the method presented by Fan et al. for performing video

indexing and retrieval. The authors use a hierarchical, semantics sensitive

classifier for bridging the semantic gap between low- and high-level features,

while the expectation maximization algorithm is used to determine the fea-

ture subspace and the classification rule. The domain-dependent concept

hierarchy of video contents in the database, similar to our work, determines

the hierarchical structure of the semantics-sensitive video classifier. The pro-

posed scheme turns out to be effective and closer to the human-level video

retrieval. Wei et al. [54] fuse multimodal cues hierarchically via a cross-

reference method. The authors present CR-Reranking for inferring the most

relevant shots, achieving high accuracy. First the initial search results are

clustered in diverse feature spaces, then the clusters are ranked by their rele-

vance to the query and finally all the clusters are hierarchically fused via the

cross-reference strategy. Finally, Lim et al. [55] combine generative with dis-

criminative models in a sequential manner. Generative models that incorpo-

48



rate explicit knowledge are constructed using a small set of training samples.

Subsequently, these generative models are used to classify new samples and

augment the existing set with new training samples. In this way the authors

manage to generate a set of training samples, sufficiently large to learn a ro-

bust discriminative classifier. Thus, the incorporation of explicit knowledge

is not so much intended to facilitate the classification process by enforcing

certain rules, but to indirectly improve the classification performance of the

discriminative classifier by offering more training samples. Compared to [55]

the advantage of our work is that explicit knowledge is made part of the

inference process and directly influence the classification performance.

6. Conclusions

In this manuscript we have proposed a modeling approach for the BN

that determines a conceptual space. This space allows machine learning

techniques and probabilistic inference frameworks to be effectively combined

for the purpose of semantic multimedia analysis. We have used the proposed

conceptual space to combine evidence originating from different multimedia

types and perform cross media analysis of compound documents and video

shots. Our experiments have verified that there are cases where the informa-

tion contained in a multi-modal resource can only be extracted if evidence

are considered across media. Moreover, it has been proven that information

coming from the domain knowledge is particularly useful, especially when

dealing with heterogeneous types of content. Interesting were the results

showing that when performing cross media analysis at the result-level, the

generative models are more suited for incorporating explicit knowledge and
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outperform the discriminative models that luck a straightforward way to

benefit from such knowledge. One important requirement of the presented

scheme is that it needs a deep modeling of the analysis context (in terms of

engineering the domain ontology and producing cross media annotations),

which makes the approach appropriate for cases where this effort is justified

by the added value in the application. Our plans for future work include the

use of the proposed modeling approach for combining information from more

media types (i.e., images, text, sound, sensor data).
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